

FINISHING EDUCATION

Knowledge is Power

The Brands You Trust

BGK[™] products deliver precision-engineered curing capabilities for a full range of coatings including liquid, powder, wax, UV and adhesives.

Binks[®] products boast innovative spray gun and air cap design along with industry leading pumps and controls.

DeVilbiss[®] products include low pressure manual and automatic spray guns and related spraying accessories. *DeVilbiss* products are widely acclaimed for ergonomics and innovative spray gun design.

Hosco[®] products deliver smooth bore, "cavity free" stainless steel fittings and accessories designed for use in paint circulating and application finishing systems.

ms[®] products include powder coating systems and equipment. ms is recognized throughout the world for quality, efficiency and durability.

Ransburg[®] manual and automatic electrostatic finishing products offer spray finishing solutions to industrial and automobile manufacturing markets.

2

Properly Sizing A Fluid Delivery System

Where do you begin when you're trying to select the right model and size of pump for you application

Binks Fluid Delivery

	Pump Type	Fluid Transfer	Circulation System	Air/Electrostatic Atomization	Hydraulic/Electrostat	ic Atomization				
Desertions		Low –	Low – Medium Pressure (< 49bar/710psi) Air Assisted Airles							
	2 Ort Cups +	✓	×	\checkmark	×	×				
	Pressure Tanks	Pressure cups and tanks are simple and robust pressurized containers. Good for materials sensitive to moisture and sensitive to shear, no pulsation.								
BINKS	Diaphragm	V	✔ (small)	\checkmark	×	×				
	Pump (AODD)	Diaphragm pumps do not harm/shear sensitive paints (they squeeze, especially good for specialist coatings)								
	Pogo Plus +	✓	×	~	×	×				
	MX1205	Low pressure drum pumps for high volume fluid transfer and spray applications of low-medium viscosity fluids								
	MX & MXL Pump	×	×	×	~	✓				
Fr Gho		High pressure, 2-ball piston pumps, used as booster pumps and available in package configurations to make it easier to start spraying								
		×	\checkmark	~	V	\checkmark				
	Maple Pump	Best for applications that require no exterior leaking seals, shear and moisture sensitive. High flows over a wide pressure range.								
	Smart Dumps	×	\checkmark	✓	×	×				
Innovation Applied	Smart Pumps	Energy saving, electrically driven pumps for low to high volume circulation system flows								

CARLISLE FLUID TECHNOLOGIES | CONFIDENTIAL

So Many Variables.....

Innovation Applied

CARLISLE FLUID TECHNOLOGIES | CONFIDENTIAL

Power Source

This Photo by Unknown Author is licensed under CC BY-SA

Different Ways To Power Equipment

Pneumatic Pumps

A supply of compressed air, usually between 1 – 10bar (14 – 145psi) is used to drive an air motor. The air motor utilises the energy within the compressed air before exhausting it, where it returns to atmospheric pressure.

Electric Pumps

Electricity is used to drive an electric motor (AC or DC). Cams may be used to change the rotary motion into a reciprocating motion. It is usually cheaper to harness electricity directly to drive a pump mechanism, rather than to convert it into compressed air.

Hydraulic Pumps

Rather than use electricity or air, the work of the pump is done by an incompressible liquid. This in turn is moved around by a secondary electric or pneumatic pump.

Optimize Your Pneumatic Pumps

- Piston pumps: If you're operating it at 94psi 116psi, consider both pressure ratio and air motor CFM consumption for your process
- Leave 1 bar (15psi) difference between pump pressures and any fluid regulators
 - The pump will consume more energy to produce the required flow at a pressure that the fluid regulator is going to reduce anyway.
- Some Water Based paints don't really need circulation or agitation. If they don't, no need to run the equipment

o Check with your paint supplier

- Pipe Sizing: size pipes to delivery the correct paint flow at the lowest possible pressure
 - Generating unneeded pressures is wasting air energy

	1:1	Ratio:	
	7 bar [100 psi]	Maximum air inlet pressure:	
	7 bar [100 psi]	Maximum fluid pressure:	
	0.20 litres [0.05 US gall]	Displacement per cycle:	
	12 litres/min [3.17 US gall/min]	Output @ 60 cycles / min:	
	25	Maximum Recommended Continous Cycle Rate [cycles/min]:	
	60	Maximum Recommended Intermittent Cycle Rate [cycles / min];	
a	3/4" BSPP Female	Fluid inlet connection:	A
	3/4" BSPP Female	Fluid outlet connection:	в
	1/4" Universal (BSPP/ NPSM) Female	Air inlet connection:	c
2.83L [0.1 SCFM]	cycle @ 6.9 bar/100psi:	Air volume /	D
28.3L [1 SCFM]	/ min 6.9 bar / 100psi:	Air flow @ 10 cycles	
84.9L [3 SCFM]	/ min 6.9 bar / 100psi:	Air flow @ 30 cycles	
Dirt: 5 µm			
Water: -20ºC@7bar [940ppm]	uality ISO 8573.1 Class	Recommended air o	
	2 2 2 4		E
OII: 0.1mg/m ³	5.5.2 #:	t	E
Non Lubricated		[
com	www.carlisleft.com	17 R1.8 4/16	7-320

Go Electric!

Cut out the middleman and power pumps and agitators with electric motors directly.

 \circ 4CFM produced @90PSI = 1HP

- To operate a 1-horsepower (hp) air motor at 100 pounds per square inch gauge (psig), approximately 7-8 hp of electrical power is supplied to the air compressor.
- Pump Pressure 12 bar Flow Rate 35.3 L/min 24/7 Operation (Average of 'Clearcoat & Hardener' Systems)

 Pneumatic Pump uses 33 cfm Air to achieve 12 bar @ 35.3 L/min
 - Power required to produce air at the compressor 5cfm (8.5M³/hr) @ 100 psi (7.0 bar) requires 1kW of Energy (1cfm 0.2kW)
- Air Pump Calculated Power 33 x 0.2 = 6.6 kWh
- Electric Pump E4-60 12 bar at 35.3 L/min requires 1.5kWh (Measured Power)

Application

What's in a typical paint?

Innovation Applied

Solvent vs. Water-borne Coatings

- Solvent-Based primary solvents used are VOC's
- Water-Borne water is the primary solvent but not the only solvent
 - Water-Borne coatings can contain small amounts of VOC's call co-solvents
 - The solvents are dispersion intermediary; enabling water and polymers to mix in a way that they wouldn't without the VOC
- Water-Based term used interchangeably but could mean that there are no VOC co-solvents

Material Integrity: Shear

Fluid is made up of multiple layers

 Applying force to some layers and not others (relative motion) cause layers to slide apart (Shear).

- Some fluids are more susceptible to Shear (sensitive) than others.
- Properties of the fluid is degraded.

• Style of Pump.

very good

pumps good

- Plunger Pump

Pumps bad

Rotary & Turbine

medium

- Positive

- Diaphragm pumps

Viscosity – Poise Converter

- Material viscosity can be affected by many factors.
 - o Temperature
 - o Shear stress
 - o Pressure
 - $\circ \text{ Time}$
 - o Humidity / Moisture Sensitivity
- Solvent Based Paint viscosity is mainly affected by temperature, the static viscosity is similar to the dynamic viscosity constant.
- Water Based Paints are affected mainly by both temperature and shear so the static viscosity is much higher than the dynamic viscosity.
- Convert viscosity cup measurements to Poise or Centipoise for calculations

Poise	0.10	0.15	0.20	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.20	1.40	1.60	1.80	2.00
Centipoise	10	15	20	25	30	40	50	60	70	80	90	100	120	140	160	180	200
Ford #3			12	15	19	25	29	33	36	41	45	50	58	66		7765.0	
Ford #4	5	8	10	12	14	18	22	25	28	31	32	34	41	45_	50	54	_ 58
Zahn #1	30	34	37	41	44	52	60	68									
Zahn #2	16	17	18	19	20	22	24	27	30	34	37	41	49	58	66	74	82
Zahn #3											10	12	14	16	18	20	23
Zahn #4												10	11	13	14	16	17
DIN #4	11	21	14	16	20	23	25	26	28	30	34	38	42	45	49	52	
ISO #4atic	n Ap	o#Za	23	34	51	60	68	74	82	93							

14

15

the pump parts. High solids coatings are more viscous

abrasive pigments and/or fillers.

Leads to premature wear of

require higher pressures to move **}**

Lower VOC, environmentally friendlier

High Solids & Pumps

60% WATER

7% PLASTICIZERS

2% PIGMENTS 11% FILLERS

}

}

Deadhead vs Paint Circulating System

- Deadhead paint systems require pump to automatically stall (stop) when no demand
- MOVE liquid material from point A to B
- Innovation Applied

- Pump expected to continually operate circulating paint
- MOVE liquid material from point A to B and back to C
- Supply consistent PRESSURE at point B (when material is in demand)
- Supply consistent FLOW at point B (when material is in demand)
- Maintain MATERIAL INTEGRITY 24/7/365

Applicator Technology

Low Pressure

- Air atomisation gives a much better/finer paint finish.
 Low viscosity paints atomised into fine droplets. Above 50 seconds viscosity, *may* need to move to Air Assisted Airless.
- Air atomising guns are able to break up/atomise the paint designed for this application.
- There's a limit to how far you can push paint down a hose with low pressures (based on length and I/D)
- AAA (Air Assisted Airless, or Air Combi, Airmix, Aircoat) uses an Airless type Tungsten Carbide orifice to produce is primary atomisation and then artificially adds air to:
 - \circ improve atomisation
 - o eliminate 'tails'
 - o alter spray fan length
- Airless is an atomisation method that uses no artificially added air at the head of the gun.

Flow and Pressure

Pump Cycles and Strokes

- Reciprocating motion, used in reciprocating pumps and other mechanisms, is a back-and-forth motion. Each movement back and forth is a stroke.
- Each cycle of reciprocation consists of two opposite motions: there is a motion in one direction, and then a motion back in the opposite direction.
- On each stroke, pumps displace a certain volume of fluid. The volume displaced per cycle is the combined volume of two strokes.

Flow Rates

Application Size	Typical Applications	Fluid Flow ml/min	Suction Gun Hole dia mm	Gravity Gun Hole dia mm	Pressure Gur Hole dia mm
Small	Adhesive	10 to 100	0.85 to 1.2	0.7 to 1.0	0.5 to 0.7
	Mobile Telephones	50 to 150	1.0 to 1.4	0.85 to 1.2	0.7 to 1.0
	Cosmetics Containers	100 to 200	1.2 to 1.6	1.0 to 1.4	0.85 to 1.2
	General Industrial Finishing	150 to 250	1.4 to 1.8	1.2 to 1.6	1.0 to 1.4
	Wooden Furniture	200 to 300	1.6 to 2.0	1.4 to 1.8	1.2 to 1.4
	Aerospace, Tableware Ceramic	250 to 350	1.8 to 2.2	1.6 to 2.0	1.2 to 1.6
	Rolling Stock,	300 to 400	Not possible	1.8 to 2.2	1.4 to 1.6
	Leather Finishing	350 to 500	Not possible	Not possible	1.4 to 1.6
	Protective Wax	400 to 600	Not possible	Not possible	1.4 to 1.8
	Lubrication Oil	600 to 800	Not possible	Not possible	1.6 to 1.8
Very Large	Sanitaryware Ceramic	700 to 1000	Not possible	Not possible	1.8 to 2.0

The above chart is based solely upon the theoretical Fluid Nozzle diameter needed for an average coating fluid type 15 to 25 seconds Din 4 viscosity. In the real world the selection must also take into account the viscosity of the material. As the viscosity of the coating increases the Fluid Nozzle required will generally increase as well. Likewise, as the viscosity decreases, the Fluid Nozzle diameter needed for a given fluid flow will decrease as well. Not all Fluid Nozzle hole sizes will be available for all gun types.

20

Pressure Ranges

APPLICATION	TYPICAL FLUID PRESSURES
Air Spray Supply	1 — 6.9 bar (15 — 100psi)
Transfer and Supply	6.9 bar (100 psi)
Paint Circulation	10 - 15 bar (145 - 220psi)
AAA Spray	60 — 140 bar (900 — 2000psi)
Airless Spray	140 — 400 bar (2000 — 6000psi)
Sealant & Adhesive Dispensing	140 — 345 bar (2000 — 5000psi)

Pressure ranges have been rounded to make the figures easier

Pumps generate flow not pressure. They have capability to generate flow against resistance.

Binks Pumps Flow/Pressure Capabilities

						Conti	nuous		Interm	ittent)			
Min/Max Range	Fluid Pressure Range		Capacity / Per Cycle		Flow @ 10 Cycles/min		Flow @ 20 Cycles/min		Flow @ 40 Cycles/min		Flow @ 60 Cycles/min		Connections	
,	Bar	PSI	Litres	Gal	Litres	Gal	Litres	Gal	Litres	Gal	Litres	Gal	Inlet	Outlet
Cups + Tanks	0 – 7.6	0 - 110	2 - 227	0.5 - 60										3/8" – 3/4"
Diaphragm Pumps	0 - 7	0 - 100	0.07 - 3	0.018 – 0.82	0.7 - 30	0.18 – 8.2	1.4 - 60	0.36 – 16.4	2.8 - 120	0.72 – 32.8	4.2 - 186	1.1 - 49.2	3/8"	3/8"
Pogo + MXL1205	4 – 39	58 - 557	0.072 – 0.081	0.019 - 0.021	0.72 – 0.81	0.19 – 0.21	1.44 – 1.62	0.38 – 0.42	2.88 – 3.24	0.76- 0.84	4.3 – 4.9	1.2 – 1.3	/3/4"	3/8" - 1/2"
MX/MXL Pumps	11 - 490	160 - 4263	0.024 – 0.880	0.008 – 0.24	0.24 – 8.8	0.08 – 2.4	0.48 – 17.6	0.16 - 4.8	0.96 – 35.2	0.32 – 9.6	1.4 – 52.8	0.48 – 14.4	3/4" – 2"	3/8" – 1-1/2"
Maple Pumps	3 - 252	44 - 3654	0.071 - 3	0.019 – 0.8	0.71 - 30	0.19 - 8	1.42 - 60	0.38 - 16	2.84 - 120	0.76 - 32	4.26 - 180	1.125 - 48	1" - 2"	3/8" – 2"
Smart Pumps	3 - 20	44 - 290	0.166 – 2.5	0.044 – 0.65	1.66 - 25	0.44 - 6.5	3.32 - 50	0.88 - 13	6.64 - 100	1.75 - 26			1" – 2"	1" - 2"

Pressure Drop Delta P Formula

△ Pressure loss = <u>Friction Factor x Flow/min x Pipe Length x Dynamic Viscosity</u> Internal Pipe Diameter⁴ (dxdxdxd)

 Friction Factor based on the mass flow characteristics for typical pipe / hose used for installation

 Imperial – 0.0273

 \circ Metric – 679

Flow

o Gallons per minuteo Litres per minute

Innovation Applied_

- o Feet
- \circ Metres
- Viscosity must be <u>Dynamic Viscosity</u> o Poise
- Pipe Diameter
 - \circ Inches
 - \circ Millimetres

Pressure Drop Quick Table

ID⁴

∆P = 0.0273 QVL

Pressure Line Drop Calculations

Flow Rate (GPM)	Viscosity (poise)	Pipe/Hose Length (feet)	Pipe/Hose ID (inches)	Pressure Drop (psi)
1.84	1	50	0.87	4.4
1.84	1	100	0.87	8.8
1.84	1	100	0.62	34.0
1.1	1	100	0.62	20.3

Take Off Hoses – are often not considered in the overall design! Diameter and Length of the hose has a dramatic effect on System Balance Innovation Applied Paint Flow Short Circuit will result in Higher Pump Flow and Pressure requirement

- Wasting energy
- Potentially damaging paint
- Causing pigment settlement issues
- Increasing wear and tear on the pump and system

Materials of Construction

Compatibility with different coatings

The Binks Pressure Tank Range

ASME Code Tanks: Numerous government and insurance bodies (e.g. OSHA, your fire marshal, your insurance underwriter, etc.) use National Fire Protection Association (NFPA) standards. NFPA standards call for the use of ASME-code tanks. All Binks pressure tanks are made to ASME standards

- •Ideal for solvent-based coatings when used with a disposable tank liner.
- •Zinc plated lid and all wetted parts in lid assembly including: fluid tube, lid bushing, outlet elbow and fitting, and agitator shaft, including a Zinc plated tank shell.

- Ideal for waterborne coatings when used with a disposable tank liner.
- •300 grade stainless steel lid and all wetted parts in lid assembly including fluid tube, lid bushing, outlet elbow and fitting, agitator shaft with Zinc plated tank shell.

80 PSI

Galvanized Pressure Tanks

- Galvanized steel tanks are primarily used with non-corrosive materials.
- Constructed with a heavy pressed steel lid and forged steel clamps, galvanized tanks are equipped with top outlet. Can be adapted for bottom outlet.
- The bottom outlet is recommended for heavy, viscous materials such as emulsified asphalts, cutback asphalts, rubber compounds, etc.

Stainless Steel Pressure Tanks

- •Stainless Steel Pressure Tanks are suitable for virtually all fluids and solvents.
- •Tanks and lids are constructed of heavy gauge 304 stainless steel and are also electro polished. Wetted parts are non-corrosive and noncorroding.
- •All models are equipped with top outlet. Can be adapted for bottom outlet.

110 PS

Innovation Applied

29

Product Range – 30/60 Gallon Tanks

- Larger supply jobs supporting multiple guns
- Galvanized steel tanks for solvent based materials
- Galvanized tanks fitted with Stainless Steel liners for water based materials
 - Liner only available at time of purchase

Pump Materials Of Construction

Conductive Acetal (DX70/Gemini II)

- » Good solvent and coating resistance
- » Water-borne compatible
- » For use with flammables
- » Good levels of abrasion resistance

Anodized Aluminium (DX200)

- » Strong
- » Heat resistant
- » Medium corrosion resistance against water-borne
- » Resists abrasion

Stainless Steel

- » 316+17-4 Grades High level of corrosion resistance and good with acids
- » Best for abrasion resistance
- » Rugged
- » 440C Grade high strength, hardness and wear resistance

Ceramic

» Extremely abrasion resistant

Tungsten Carbide

- » Extremely hard
- » Abrasion resistant

UHMWPE

- » Abrasion resistant
- » Self lubricating
- » Not for high temperatures
- » Ceramic Filled increases resistance

FKM (Fluoroelastomer)

- » Wide compatibility with fluids
- » Resistant to aggressive solvents
- » Very good compression set resistance

PTFE

- » Chemically inert to most fluids
- » Excellent when used with solvents
- » Can use for high temperature
- » Can be glass filled for durability

Leather

- » Can be used for high temperature
- » Natural material; seals with very minor damage

Pump Features

Features may increase suitability for application

Innovation Applied

DeVilbiss KBII + Binks SG-2

- 2 QTS/2L LITRE REMOTE CUP o ALUMINIUM & ST ST
- Light weight, portable and easy to use
 2.3 Litre capacity greater area coverage, less refills
 - Complete gun manoeuvrability at any angle its suitable for most Conventional or Compliant pressure/suction guns
 - o Stable, wide, reinforced base
 - Aluminium or Stainless Steel options (for waterborne materials)
 - \circ SG-2 has 50psi option for higher viscosities
 - Positive grip carry handle for operator comfort
 - At-the-job controls with lid mounted pressure gauge Available complete with short cup to gun air and fluid hoses.

DX Difference

Ease Of Maintenance

Access to key components quick and easy
 Spare parts kits designed around repair jobs

- Non Stall Air Valve
- Unique diaphragm shape for long and durable life
- Choice of wetted materials

 Conductive acetal, anodized aluminium, stainless steel

Choice of pump packages

 Filters, air regulators, Gun & Hoses

DX Built In Fluid Regulator

MX/Maple Benefits

- Ceramic Coated Piston
 Lasts 4x longer than chrome
- Anti-Stall Magnetic Detents

 Quick stroke changeover/reduced pulsation
- Low Ice Air Motor with Quick Exhaust

 Prevents pump from stalling
- Lubrication Free Air Motor
- Tungsten Carbide Valve Seats

 Long operating life
- Spring Loaded Packings

 Self adjusting, less maintenance

Innovation Applied_

Maple/Smart Advantage

- Horizontal fluid section <u>handles shear</u> sensitive materials with kid-gloves
- Reciprocating horizontal piston configuration provides smooth balanced fluid pressure on each stroke, <u>reducing</u> <u>pressure fluctuations on changeover</u>
- Enclosed Bellows Seals <u>no exposed</u> <u>seals</u>, eliminating shaft packing lubrication and significantly reducing pump maintenance
- Easy maintenance with quick access to balls, seats and piston seal

System is Set up in Smart Mode for:-

- Maximum Needed Dynamic Flow •
- Minimum Pressure needed at last 'take off' •

Open Loop :-

BPR is set up for 0 bar Pressure Pump Develops pressure to overcome the pipework friction losses

Closed Loop:-

BPR set to maintain 8 bar at last take off Reactive to flow demand changes

Innovation Applied

Smart System Open Loop Flow 5.5L @ 4 bar pressure

Closed Loop Reactive Flow $5.5L \rightarrow Max 11.2L$ @ 12 bar pressure

Pump is Flow Reactive for:-19 mm bore main pipe

Open Loop Flow 5.5 L/min Flow Velocity 0.322m/s

Closed Loop Flow 11.2 L/min (worst case) Flow Velocity 0.656m/s

SMART Pump

Hosco

A PARASAS BRAND

Thank you!

©2022 Carlisle Fluid Technologies, Inc. | Models and specifications subject to change without notice. All rights reserved.