

reaw.

FINISHING EDUCATION

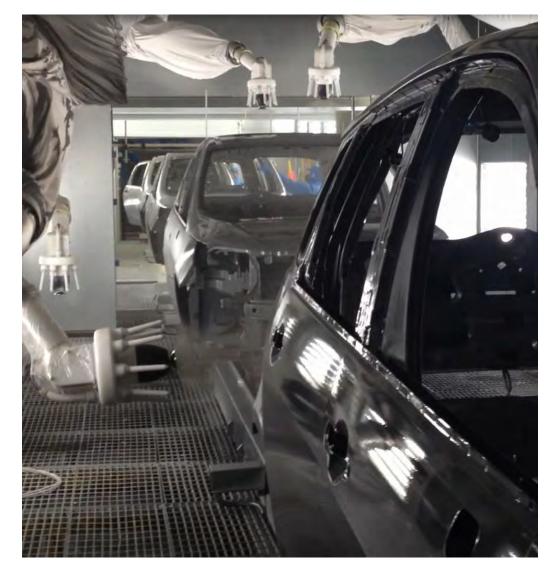
Knowledge is Power

Benefits and Cost Savings Associated with Automated Finishing Systems

CARLISLE FLUID TECHNOLOGIES | CONFIDENTIAL

Hosco

A PARISIE BRAND


Justin Hooper Global Product Manager – Automatic Atomization jhooper@carlisleft.com

©2020 Carlisle Fluid Technologies, Inc. | Models and specifications subject to change without notice. All rights reserved.

So you want to automate a paint line

- Why do you want to automate?
- What is important to know in order to automate?
- What variables should you consider controlling?
- Examples of value generated from automating
- Do I still need people once I automate?
- Purpose of today is not to provide all the answers, but to get your started in your journey
- We have people to help, but it's good to develop a game plan

- Safety People First

 Exposure to hazardous pollutants
 RSI Repetitive Strain Injury
 Approvals & Regulations
- Quality 1st Time Yield (% of parts without requiring rework)

 Is the part being reworked due to paint related issues?
 Is the customer putting too much or not enough on the part?
 How do the parts look vs. THEIR competitors?
- Production % completion vs. % available

 How do your products currently move through the finishing department?
 Ask about how long many hours the conveyor is moving
 - Start up at beginning of day
 - Stop at end of shift
 - Unscheduled stops during production
 - o Understand the tipping point between adding and eliminating shifts
- Savings Focus on Paint Costs
 - You pay somebody to buy it
 - o You pay somebody to apply it
 - $_{\odot}$ You pay somebody to clean it up
 - $_{\odot}$ You pay somebody to dispose of it

- Safety People First
 - Exposure to hazardous pollutants
 - o RSI Repetitive Strain Injury
 - o Approvals & Regulations
- Quality 1st Time Yield (% of parts without requiring rework)

 Is the part being reworked due to paint related issues?
 Is the customer putting too much or not enough on the part?
 How do the parts look vs. THEIR competitors?
- Production % completion vs. % available
 - o How do your products currently move through the finishing department?
 - o Ask about how long many hours the conveyor is moving
 - Start up at beginning of day
 - Stop at end of shift
 - Unscheduled stops during production
 - o Understand the tipping point between adding and eliminating shifts
- Savings Focus on Paint Costs
 - You pay somebody to buy it
 - You pay somebody to apply it
 - You pay somebody to clean it up
 - You pay somebody to dispose of it

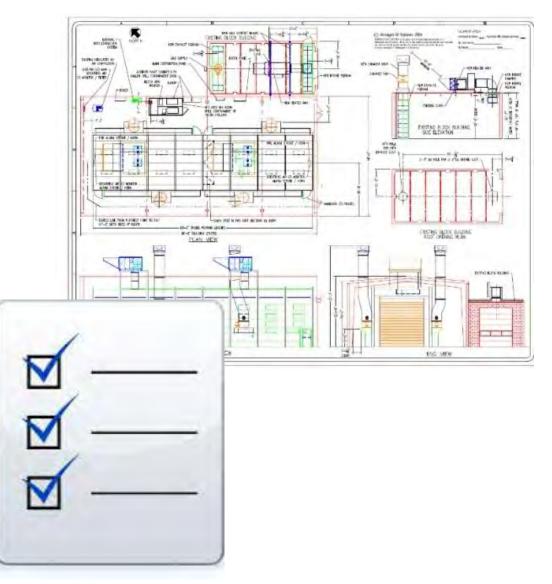
- Safety People First
 - Exposure to hazardous pollutants
 - o RSI Repetitive Strain Injury
 - Approvals & Regulations
- Quality 1st Time Yield (% of parts without requiring rework)
 - o Is the part being reworked due to paint related issues?
 - o Is the customer putting too much or not enough on the part?
 - o How do the parts look vs. THEIR competitors?
- Production % completion vs. % available
 - How do your products currently move through the finishing department?
 - o Ask about how long many hours the conveyor is moving
 - Start up at beginning of day
 - · Stop at end of shift
 - Unscheduled stops during production
 - o Understand the tipping point between adding and eliminating shifts
- Savings Focus on Paint Costs
 - You pay somebody to buy it
 - You pay somebody to apply it
 - You pay somebody to clean it up
 - You pay somebody to dispose of it

- Safety People First
 - Exposure to hazardous pollutants
 - o RSI Repetitive Strain Injury
 - Approvals & Regulations
- Quality 1st Time Yield (% of parts without requiring rework)

 Is the part being reworked due to paint related issues?
 Is the customer putting too much or not enough on the part?
 How do the parts look vs. THEIR competitors?
- Production % completion vs. % available
 o How do your products currently move through the finishing department?
 - $_{\odot}$ Ask about how long many hours the conveyor is moving
 - Start up at beginning of day
 - Stop at end of shift
 - Unscheduled stops during production
 - o Understand the tipping point between adding and eliminating shifts

Savings – Focus on Paint Costs

- You pay somebody to buy it
- You pay somebody to apply it
- You pay somebody to clean it up
- You pay somebody to dispose of it


Selecting Automation

• Greenfield project

How are you going to rack your parts?
What kind of conveyor to use?
How are you going to mount your paint gun/atomizer?

- New program in existing finishing system
 - oWhat variables are you currently controlling?

oHow is your current consistency?

Product presentation is most often dictated by

SIDE

A SIDE

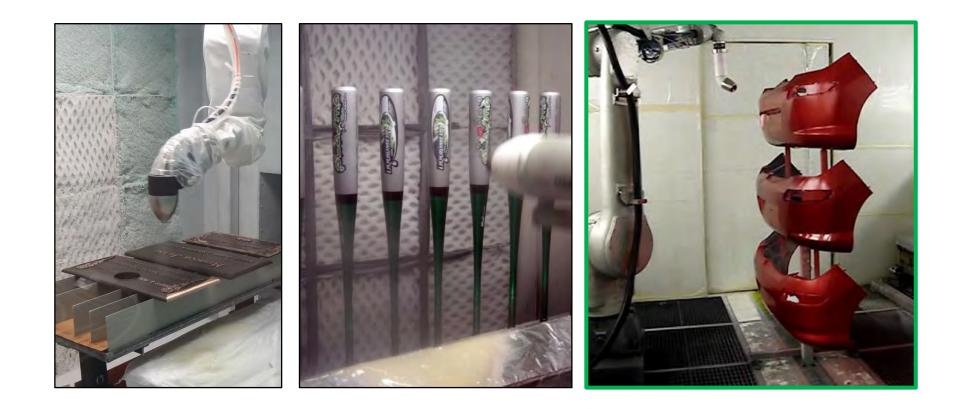
- Manufacturing process
- Size or weight of the product coated
- Desire to coat new product in existing system

Conveyor Systems

- Overhead
- Floor mounted
- Chain on edge
- Power and Free (indexing)
- Horizontal belt or web (flatline)

Part Presentation

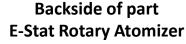
- Single or multiple parts per fixture
- Fixture may index on 90° or 180° increments
- Fixture may continuously rotate
- Rotation may be reversed in each spray zone



Innovation Applied

Part Presentation

- Repeatability
- Grounding

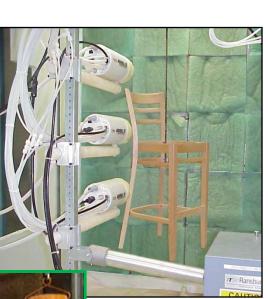


Electrostatics

- More forgiving application
- Electrostatic "wrap"
- Better uniformity
- Increased transfer efficiency
 - ✓ Decreased coating cost
 - Decreased booth maintenance
 - Decreased emissions
 - Decreased waste disposal

14

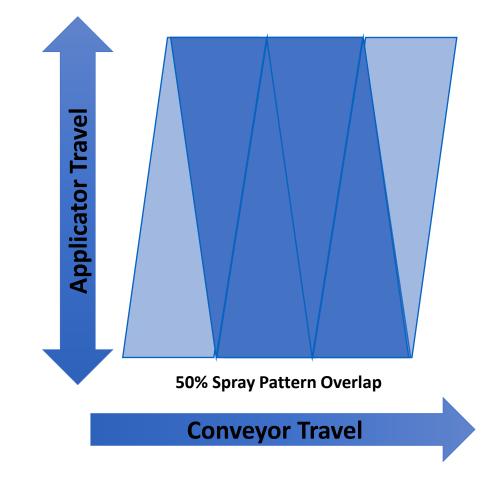
Backside of part Conventional Air Spray

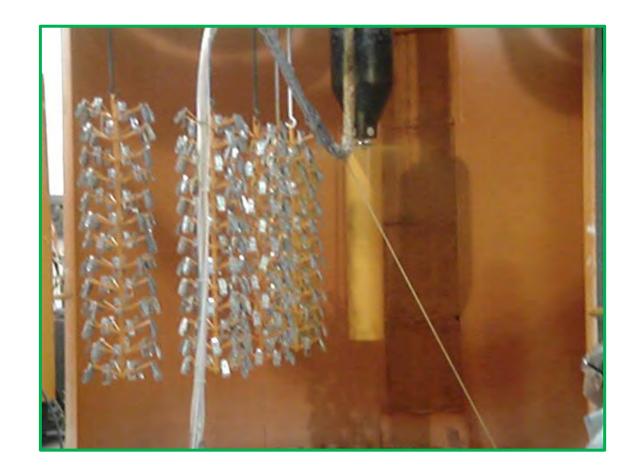


Backside of part E-Stat Air Atomizer

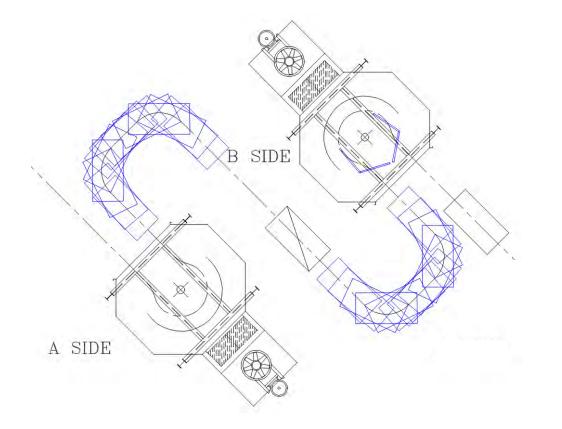
- Short Stroke Reciprocators
 - ✓ A reciprocator increase the effective coating area of the applicator.
 - ✓ Typical stroke range 7 14"
 - ✓ Blends round spray patterns together providing very good coating uniformity.
 - Improves coverage by changing presentation of the applicator to the part.
 - ✓ Rotary atomizer, 30 cycles per minute
 - ✓ Air atomizers, 60 cycles per minute

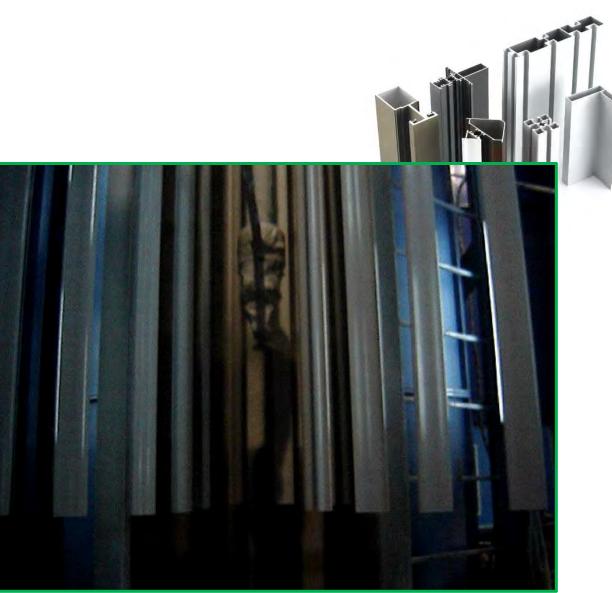
- Long Stroke Reciprocators
 - ✓ A reciprocator increase the effective coating area of the applicator.
 - ✓ Typical stroke length 3' 14'
 - ✓ May be equipped with "toeing" feature that angles applicators in direction of travel.
 - ✓ Rotary atomizer, 180 ft/min maximum
 - ✓ Air atomizers, 280 ft/min maximum




- Long Stroke Reciprocators
 - ✓ Machine must be synchronized with conveyor to get uniform finish
 - ✓ 50% or 75% spray pattern overlap most commonly used
 - ✓ 50% overlap: conveyor speed (in) / pattern width (in) = machine cycle rate
 - ✓ 75% overlap = above X 2
 - ✓ Assume:
 - 14 ft/min
 - 12 in spray pattern

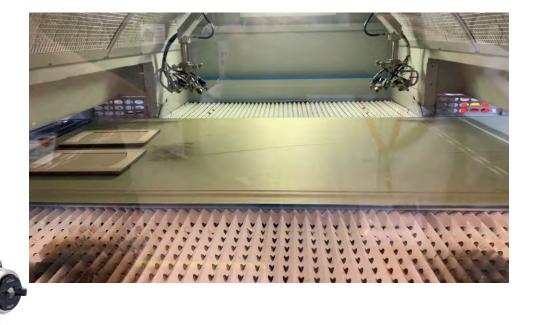
$$\frac{14 \text{ ft}}{1 \text{ min}} \times \frac{12 \text{ in}}{1 \text{ ft}} \times \frac{1 \text{ cyc}}{12 \text{ in}} = \frac{12 \text{ cyc}}{1 \text{ min}} @ 50\% \text{ Overlap}$$





- Long Stroke Reciprocators
 - ✓ Used with disk system
 - ✓ Typical stroke range 3' 24'
 - Recommend a minimum of 4 strokes on part while in disk loop
 - ✓ Maximum speed 4ft/sec, slower speed is recommended.

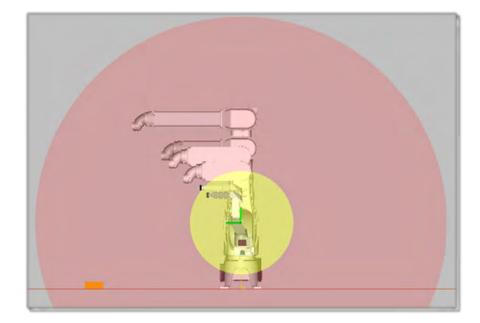
- Long Stroke Reciprocators
 - ✓ "S" loop conveyor configuration
 - $\checkmark\,$ Allows access to both sides of part



19

- Smart Reciprocators
 - $\checkmark\,$ Similar to long stroke style reciprocator
 - ✓ Additional axis of movement incorporated
 - ✓ Variable stroke length
- Special Machines (Flat Line)
 - ✓ Multiple atomizer on carriage
 - Product coated conveyed on belt beneath atomizers
 - ✓ Integrated system to reclaim material

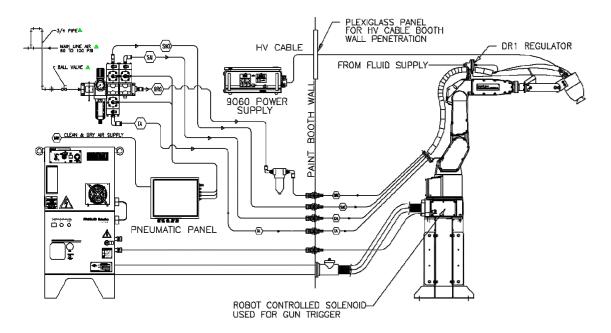
2(

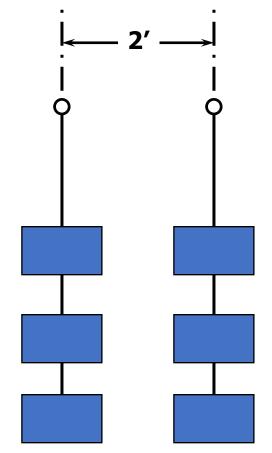


Innovation Applied

21

Automation: Reciprocators and Robots


- ✓ Flexible automation, programmed to accommodate product coated.
- ✓ Ability to maintain optimal distance between applicator and substrate.
- ✓ In most cases more cost effective than designing custom "hardware" solution
- Robot selection made based on work envelope "reach" and payload capability


Mounting Automatic Applicators

Process Information

CARLISLE,

- Following information is needed to make equipment recommendations
 - ✓ Conveyor speed (ft/min)
 - ✓ Rack centers (ft)
 - ✓ Parts per rack
 - \checkmark Hours per shift
 - ✓ Shifts per day
 - ✓ Days per week
 - \checkmark Weeks per year of operation

Finishing Process Adjustments

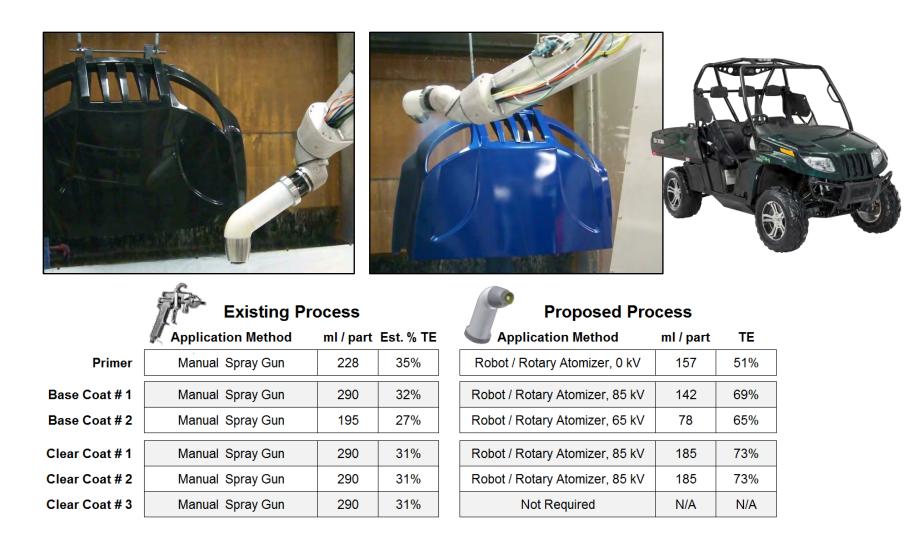
"We become the scientists by turning the knobs" – Production Manager, Cabinet Manufacturer

How can a finishing department stay consistent when there are so many things to adjust and people to adjust them?

Products	Setting Range	Unit	Products	Setting Range	Unit	Products	Setting Range	Unit
Gun Atomization Air	0-125	PSI	Agitation Speed	0-300	RPM	Turbo disk Stroke Speed	0-60	inches/second
Low Pressure Fluid Pump Air Pressure	0-125	PSI	Air Cap Selection	Hundreds of options		Rotary Atomizer Shaping Air	0-125	PSI
Pressure Tank Air Pressure	0-125	PSI	Material Viscosity	1-20,000	centipoise	Rotary Atomizer Bearing Air	0-125	PSI
Gun Low Pressure Fluid Pressure	0-300	PSI	Quick Disconnects	1-20	CFM restriction	Rotary Atomizer Speed	1-100,000	RPM
Low Pressure Fluid Regulator	0-300	PSI	Material Temperature	0-160	Degrees	Bell Cup Selection	Multiple sizes	
Low Pressure Fluid Pump Pressure	0-300	PSI	Substrate Temperature	0-1000	Degrees	Recip Rate	0-60	Cycles/Minute
Low Pressure Back Pressure Regulator	0-300	PSI	Ambient Temperature	0-110	Degrees	Convection Oven Temperature	60-500	Degrees
High Pressure Fluid Pump Pressure	300-8000	PSI	Atomization Air Temperature	0-180	Degrees	Gas IR Temperature	100-1000	Degrees
High Pressure Fluid Regulator	300-8000	PSI	Booth Air Flow	1-500	Feet/Sec	Electric IR Temperature	100-1000	Degrees
High Pressure Back Pressure Regulator	300-8000	PSI	Filter Size	20-200	mesh	Conveyor Speed	1-100	Feet/Minute
Gun High Pressure Fluid Pressure	300-8000	PSI	Air Cleanliness	501	Microns	Recip Stroke Length	8-14	inches
Fluid Hose Length	1-300	Feet	Ball Valves	On / Off	N/A	COE Rotation Speed	1-300	RPM
Air Hose Length	1-300	Feet	Material Percent Solids	1-100	percent	Air Cap Orientation	0-90	Degrees
Fluid Hose Size	1/16-1.5	Inch	Humidity	0-100	Percent	Spray Gun Yaw and Pitch	0-90	Degrees
Air Hose Size	1/16-1	Inch	Substrate Preparation	mil spec, solvent wiped		Spray Gun Movement Speed	0-10	Feet/Sec
Fluid Nozzle Size	.4-3.0	mm	Product Grounded	Yes / No	???	Distance from Atomizer to Substrate	1-24	Inch
Gun Trigger Air	0-125	PSI	Turbo disk Stroke Length	5-32	Feet	Fan Pattern Size	1-20	Inch
			Voltage	0-100,000	Feet/Sec	Fan Pattern Shape	Round to Oval	

Calculating Transfer Efficiency

	Air Atomized E-Stat Gun		Rotary Atomizer		
Process Variables	Eng. Units	Metric	Eng. Units	Metric	
Conveyor Speed (ft/min), (M/min) =	18.00	5.5	18.00	5.5	
Rack Spacing (ft), (mm) =	0.75	228.6	0.75	228.6	
Parts Per Rack =	1	1	1	1	
Seconds / Rack - Part (sec) =	2.50	2.5	2.50	2.5	
Racks - Part Per Minute =	24.00	24.00	24.00	24.00	
Racks - Part Per Hour =	1440.00	1440.0	1440.00	1440.0	
Parts Per Hour =	1440.00	1440.00	1440.00	1440.00	
Application Variables					
Coating Thickness (mils), (microns) =	1	25	1	25	
% Solids by Volume =	58%	58%	58%	58%	
Surface Area Coated (sq ft), (sq M) =	1.694	0.16	1.694	0.16	
Transfer Efficiency Estimated =	45%	45%	70%	70%	
Estimated Wet Paint Volume per Part (cc's) =	15.21	15	9.78	10	
Estimated Wet Paint Volume per Rack (cc's) =	15.21	15	9.78	10	
Calculated Flow Rate					
% Trigger on Part =	100%		100%		
Actual Total Flow Rate Required (cc/min) =	365		235		
Recommended Number of Applicators =	1		1		
Flow Rate per Applicator =	365		235		



Innovation Applied

28

Rotary Atomizer ROI

Is There An Opportunity To Upgrade?

- Spraying Oil Filters
- Using two 95A guns
- Spraying 12 Gallons Per Day @ \$80 per Gallon
- How do you progress in the sales process?

	95A Guns	Ransflex Auto	Evolver SE	Aerobell 168
Cost of Product	\$3,000	\$7,500	\$11,500	\$25,500
Yearly Maintenance Expenses	\$1,500	\$3,750	\$5,750	\$12,750
Yearly Material Usage	3750	3187.5	2625	2062.5
Yearly Material Spend	\$318,750	\$270 , 938	\$223,125	\$175,313
Year 1 Cost	\$323,250	\$282,188	\$240,375	\$213,563
Material Reduction	Baseline	15%	30%	45%
Year 1 Savings	Baseline	\$41,063	\$82,875	\$109,688

"By spending \$26,000 on rotary atomizer technology we estimate a savings of \$110,000 in year 1. Does that present an opportunity for us to spend more time to propose the equipment that can provide that savings?"

\$7,500

\$11,500 \$25,500

Aerobell 168: Customer Success Story

Customers System:

- Metal shelving and racking systems
- 2 long stroke reciprocators with 4 AA guns each (8 total applicators)
- Flow rate 500 ml/min each (4000 ml/min) Primary concerns:
- Coverage
- Material usage

Finishing Brands Solution:

- Use applications lab facility to develop new process
- 3 Aerobell 168 mounted on short stroke reciprocator (2 stations)

Primary concerns addressed:

- Coverage Aerobell 168 provide better coverage than current system
- Material usage 375 ml/min (2250 ml/min total flow rate)
- Reduced material usage by 44% (2250/4000)

Why Else Do Customers Upgrade?

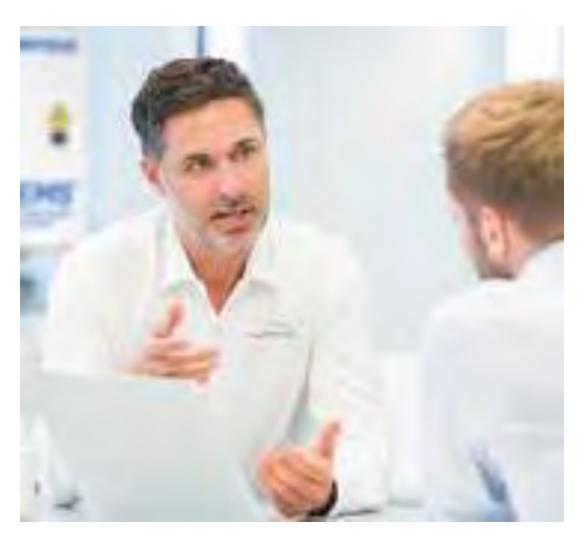
Toy manufacturer

- Switched to "bells" (rotary atomizers) mounted on short stroke reciprocator.
 - ✓ Faster color change time
 - More accommodating for "batch running"
 - Increased system efficiency

Toy Manufacturer Justification

System justification based on increased production

			System Variables
		8.00	Conveyor Speed (ft/min) =
		1.33	Rack Spacing (ft) =
		104	Parts Per Rack =
		9.98	Seconds / Rack (sec) =
		6.02	Racks Per Minute =
		361	Racks Per Hour =
		37,534	Parts Per Hour =
		20	Hours Per Day =
		750,677	Parts \ Day @ 100% Yield (no loss to color change) = [
	AeroBell System	TurboDisk System	Color Change Variables
	100	100	Color Changes Per Day =
00		15	Racks Skipped Per Color Change (Disk System) =
4	4	10	
4	4 40	150	Color Change Time (sec) =
4 10	4 40 41,600		Color Change Time (sec) = Number of Parts Per Day Lost to Color Change =
4 40 0		150	



Rotary Vs. Air Atomization Technology

Q	– Quality P – Prod	duction \$ - Savings
	Air Atomization	Rotary Atomization
10)	Transfer efficiency (35 – 65%) with electrostatics.	Transfer efficiency (60 – 85%) with electrostatics, reduces material usage.
	Transfer efficiency (15 – 40%) without electrostatics.	Transfer efficiency (35 – 65%) without electrostatics, reduces material usage.
	Elliptical spray pattern often presents problems with uniformity causing mottled appearance.	Round spray pattern with excellent uniformity produces more uniform finish quality.
	Wide range of atomized particle size distribution in spray pattern causing irregular surface / film.	Very narrow atomized particle size distribution resulting in better finish and film build uniformity.
	Elliptical spray pattern must be re-orientated normal to the surface being coated.	Round spray pattern is easily manipulated by robot resulting in programming efficiency of 10 - 15%.
	Defects can be created if applicator is "triggered on" the surface (spitting).	Atomizer is always rotating so applicator can be "triggered on" the surface.

Employees Needed

- Programmer Internal or External
- Someone to load/unload parts
- Operator/Supervisor
- Manufacturing Engineer
- Maintenance
- Paint Kitchen Operator

35

Why Customers Don't Receive Budget Approval

- Value has not been quantified
- Competing with other priorities outside of Paint Shop
- Value has not been proven must show it!
- Safety, safety, safety

 People using the equipment
 People approving the equipment
 People overseeing safety
- Can the rest of your conveyor handle the change?
 - \circ Wash station
 - $\circ \, \text{Oven}$

Tools For Success

- Understand your processes and be ready to share with others
- Quantify the opportunity to change
- You must be excited and ready to implement change
- Leverage experts for product conversations
- Lab testing, lab testing, lab testing

Hosco

A PARASAS BRAND

Thank you!

©2022 Carlisle Fluid Technologies, Inc. | Models and specifications subject to change without notice. All rights reserved.